

Primary applications:
Light Sheet Microscopy
Multi-Color Fluorescence
High Content Screening
Tiling Applications

```
| 9 Megapixel (2960 x 2960)
* 17.8mm Field of View
* 4.25\mum x 4.25\mum Pixel Area
* 30 Frames per Second
D 73% Quantum Efficiency
```


IRIS 9

Large Field of View Scientific CMOS

Iris 9 Scientific CMOS camera is designed to deliver extremely high-resolution images for live cell microscopy applications. Iris 9 delivers a 9 Megapixel sensor with a 17.8 mm field of view ensuring it can maximize the number of cells captured in a single frame.

The $4.25 \mu \mathrm{~m}$ pixels provide highly detailed images across the imaging plane and allow for Nyquist spatial sampling at 40X magnification. The camera can capture dynamic cellular events at 30 frames per second for the full frame, and at thousands of frames per second with regions.

The Iris 9 has a high quantum efficiency and low noise levels to maximize dim signal detection and allowing for the use of shorter exposure times to minimize cellular photo-damage.

The Iris 9 is the ideal camera to deliver high resolution images at high frame rates for live-cell microscopy applications.

Features	Advantages
9 Megapixel Sensor 17.8 mm Field of View	Maximize the imaging area and increase the number of cells acquired per frame
Optimized $4.25 \mu \mathrm{~m}$ Pixel Size	Image the finer details of your samples and maintain proper spatial sampling at 40X magnification
Fast Frame Rates	Mapture dynamic cellular events with high temporal resolution
High Quantum Efficiency	Maximize ability to detect extremely faint fluorescence signals
Low Read Noise	Measure both bright and dim signal levels within the same image
Large Dynamic Range	

Specifications	Camera Performance
Sensor	GPixel GSense 5130 Scientific CMOS sensor
Active Array Size	2960×2960 (9 Megapixel)
Pixel Area	$4.25 \mu \mathrm{~m} \times 4.25 \mu \mathrm{~m}\left(18.06 \mu \mathrm{~m}^{2}\right)$
Sensor Area	$12.61 \mathrm{~mm} \times 12.61 \mathrm{~mm}$ 17.8 mm diagonal
Peak QE\%	>73\%
Read Noise	1.5e-
Full-Well Capacity	13,000e-
Bit Depth	16-bit
Readout Mode	Rolling Shutter Effective Global Shutter
Binning	2×2 (on FPGA)

Cooling Performance	Sensor Temperature	Dark Current
Air Cooled	$0^{\circ} \mathrm{C} @ 30^{\circ} \mathrm{C}$ Ambient	$0.5 \mathrm{e}-/$ pixel/second

Specifications	Camera Interface
Digital Interface	PCle
Lens Interface	C-Mount
Mounting Points	$1 / 420^{\prime \prime}$ mounting point on each side

Triggering Mode	Function
Input Trigger Modes	Trigger-First: Sequence triggered on first rising edge Edge: Each frame triggered on rising edge
Output Trigger Modes	Any Row: Expose signal is high while any row is acquiring data All Rows: Effective Global Shutter - Expose signal is high when all rows are acquiring data Signal is high for set Exposure time
Rolling Shutter: Effective Global Shutter - Expose signal is high when all rows are acquiring data	
Signal is High for set Exposure time - Readout Time	

Frame Rate (PCle interface)			
Array Size	16-bit		
2960×2960	30		
2960×1500	59		
2960×512	174		
2960×128	695		
Accessories (Included)			
Manual			
Prigger Cable Card/Cable Power Supply			

18.49
-MOUNT FLANGE
FOCAL DISTANCE

Photometrics is a registered trademark.
Iris 9 is a trademark of Photometrics.
All other brand and product names are the trademarks of their respective owners.

Specifications in this datasheet are subject to change.
Refer to the Photometrics website for most current specifications.

